
Leader: Defense Against Exploit-Based Denial-of-Service Attacks
on Web Applications

Rajat Tandon1,2, Haoda Wang1, Nicolaas Weideman1, Shushan Arakelyan1, Genevieve Bartlett1,
Christophe Hauser1 and Jelena Mirkovic1

1University of Southern California Information Sciences Institute, Marina Del Rey, CA, USA
2Juniper Networks Inc., Sunnyvale, CA, USA

1{rajattan, haodawan, nweidema, shushana}@usc.edu, {bartlett, hauser, mirkovic}@isi.edu
2rajatt@juniper.net

ABSTRACT
Exploit-based denial-of-service attacks (exDoS) are challenging to
detect and mitigate. Rather than flooding the network with exces-
sive traffic, these attacks generate low rates of application requests
that exploit some vulnerability and tie up a scarce key resource. It
is impractical to design defenses for each variant of exDoS attacks
separately. This approach does not scale, since new vulnerabilities
can be discovered in existing applications, and new applications
can be deployed with yet unknown vulnerabilities.

We propose Leader, an attack-agnostic defense against exDoS at-
tacks. Leader monitors fine-grained resource usage per application
on the host it protects, and per each external request to that applica-
tion. Over time, Leader learns the time-based patterns of legitimate
user’s usage of resources for each application and models them
using elliptic envelope. During attacks, Leader uses these models
to identify application clients that use resources in an abnormal
manner, and blocks them.

We implement and evaluate Leader for Web application’s protec-
tion against exDoS attacks. Our results show that Leader correctly
identifies around 99% of attack IPs, and around 99% of legitimate
IPs across six different exDoS attacks used in our evaluation. On
the average, Leader can identify and block an attacker after six
requests. Leader has a small run time cost, adding less than 0.5% to
page loading time.

CCS CONCEPTS
• Security and privacy → Web application security; Denial-of-
service attacks.
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1 INTRODUCTION
Distributed denial-of-service (DDoS) attacks create a large distur-
bance to businesses and critical infrastructure services, resulting in
large monetary losses [5, 12, 25, 52]. Traditionally, DDoS attacks
generate a flood of traffic to deplete network resources at the target,
and interfere with the target’s service to its legitimate users [51].
As cloud-based defenses handle volumetric DDoS attacks, attack-
ers shift their focus to sophisticated, attacks targeting application
resources [47, 49]. Application-layer DDoS attacks can be effective
at thousands of requests per second, consuming much lower band-
width than volumetric attacks. Application-layer DDoS attacks are
on the rise [21, 22, 24, 26, 50]. Recent statistics from Akamai [1, 2],
show that the number of daily Web application attacks have seen a
growth of more than 200% from December 2017 to October 2019.
CloudFlare blog from 2022 finds a massive spike in application-layer
DDoS attacks, specifically on Web servers [10], to coincide with
Russia’s invasion of Ukraine.

There are two broad classes of application-layer DDoS attacks:
flash-crowd attacks [33, 53], which send high quantities of legitimate
requests to the target (e.g. thousands per second), and exploit-based
attacks, which exploit some vulnerability at the target application
to bring it down with very low request rate (e.g., under 100 requests
per second). This paper focuses on identifying and blocking exploit-
based attacks (exDoS for short).

ExDoS attacks require very few requests to completely exhaust
the application’s resources and deny service to legitimate clients. In
some cases the vulnerability in the application can be patched. For
example, the application may use a weak hash table implementation
to store user input, and the attack sends carefully crafted inputs
that hash into the same slot. This leads to hash table collisions and
slows down the application. Replacing the hash table implementa-
tion with a more secure one will patch the vulnerability. In other
cases, the vulnerability is simply in the assumption of how an ap-
plication will use a scarce resource. For example, operating systems
support a limited number of simultaneously open sockets, on the
order of several thousand. When a new client request arrives, the
server creates a dedicated socket to process it. In case of legitimate
requests this approach works well, since client/server connections
are short-lived and the socket is quickly freed. Slowloris [62] exDoS
attack, however, leads to a prolonged client/server communication
and quickly depletes all available sockets. Since there are many
applications, with known and unknown vulnerabilities, we cannot
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rely on patching only to address exDoS. For similar reasons, de-
fenses against one variant of exDoS (e.g., Fitri et al. [17] and Choi
et al. [9] approaches defend only against Slowloris) cannot fully
address the problem.

We propose Leader, a novel application-agnostic and attack-
agnostic defense against exDoS attacks. Our insight is that any
exDoS attack must overuse resources of the target server to create
DoS effect, regardless of the kind of vulnerability it exploits. We
rely on monitoring resource use patterns per connection and per
application to identify and block sources of exDoS attacks. The
novelty of our approach lies in the Leader’s monitoring of resource
use patterns, which we call connection life stages. These connection
life stages are built from multiple, complementary observations
collected at the (1) network level, and (2) OS level as each external
client request is handled. Those observations are further linked to
application-level information, identifying the application’s process
and thread that handle the external client request.

Leader monitors all external requests for running services, and
leverages connection life stages to build a fine-grained pattern
of resource consumption by each service as it processes each re-
quest. During learning (in absence of attacks), Leader groups these
patterns per application, and uses elliptic envelope to build the
application profile – a model of legitimate resource usage patterns
by the external requests sent by the application’s legitimate clients.
During classification, Leader classifies each ongoing connection
as legitimate or attack, using the corresponding application pro-
file to detect connections that consume resources in an abnormal
manner. Sources of these connections (IP addresses) are blocked
to mitigate the attack. Because Leader monitors all services and
all resources its design is theoretically generic enough to protect
various applications against various exDoS variants.

In this paper we focus on one popular class of application – Web
applications. We narrowed our focus to one application class so
that we could design realistic evaluation scenarios, which include
mulitiple application implementations, realistic content served by
the application, legitimate user’s interaction with the application
and a variety of exDoS attacks. Web applications come in many
flavors – PHP coupled with popular servers, such as Nginx or
Apache2, Javascript applications, Python-based applications, etc.
Leader’s design is application-agnostic, and thus can protect all
these implementations. We leave exploration of Leader’s use with
application classes other than Web servers for future work.

We evaluate Leader on the Emulab testbed [58] using three pop-
ular Web server implementations – apache2, nginx and Flask [60],
using realistic legitiimate traffic and content, and six different exDoS
attacks: Slowloris attack [62], Hash Collision Attack [16], Regular
Expression Denial of Service Attack (ReDoS) [54], the attack using
preg_replace() PHP Function Exploitation (PHPEx) [56], Infinite
recursive calls denial of service (IRC) [19] and Maliciously Crafted
URL Attack (MCU).

Leader accurately identifies around 99% of attacker IP addresses,
and around 99% of legitimate IP addresses. On the average, Leader
can successfully identify and block an attack source after 6 re-
quests. Leader has a minimal run-time overhead, and adds at most
0.5% to Web request processing time. Compared to related work
– Rampart [30] and Finelame [13] – Leader does not require any
modification to the source code of the applications it protects, and

it achieves comparable or better classification accuracy on a wider
range of attacks and server applications. Thus, Leader offers supe-
rior defense against exDoS.

2 EXDOS ATTACKS
Exploit-based denial-of-service attacks (exDoS) are challenging for
defenses, because they exploit vulnerabilities in the target appli-
cation’s design or implementation. They craft legitimate-looking
application requests, and are often effective at very low rates (e.g.,
100s to 1000s of requests per second). Each attack variant exploits
a different vulnerability through a completely different mechanism.
As there are many target applications and potential vulnerabilities,
it is hard to handle exDoS in a scalable manner.

We observe that many of exDoS attacks consume the resources
of the target application or the underlying operating system in a
manner that is different from legitimate users. For example, legiti-
mate Web clients usually send their request to the Web server in a
single packet, and then receive a reply. In a Slowloris attack [62],
a variant of exDoS, the attacker starts but never finishes sending
the Web request. This ties up a network socket for a long time,
until all network sockets on the target server are depleted, which
leads to denial of service. Similarly, when legitimate clients access a
PHP page, they usually provide inputs that take a moderate time to
process at the server. Conversely, attackers will craft requests to a
vulnerable PHP page that will lead to lengthy processing or even an
infinite loop [54]. This insight guides our approach to model how
legitimate clients use server resources in a fine-grained manner,
and to detect attackers as clients whose resource use departs from
this model.

3 LEADER DESIGN AND IMPLEMENTATION
This section gives an overview of Leader’s design and implemen-
tation. Our design and most of our implementation attempt to be
generic and application-class agnostic. Some optimizations in our
implementation focus on protecting Web applications from exDoS
attacks.

3.1 Overview
Leader runs on the server that is being protected from exDoS attacks,
and performs three distinct functionalities: (1) behavior profiling,
(2) attack connection identification, and (3) attack mitigation.

Leader has two running modes: learning and classification. In the
learning mode, Leader performs behavior profiling to learn applica-
tion profiles. Each application profile models how legitimate users
consume resources when engaging with the given application. This
learning occurs offline, using traces of the application’s operation
in the absence of attack traffic. In general, the models of per-request
resource consumption should not change when the server’s content
changes, but only if the nature of its service changes. For example,
if an application server updates its content daily, it need not retrain
Leader’s models. However, if an application server used to serve
static content, and now it started serving dynamic content, or if it
used to support text messages between users, but now it supports
video messages too, Leader’s models should be retrained to capture
new usage patterns. During learning, Leader should ingest traces
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Table 1: Resource usage by the different stages of a sample legitimate and a sample attack connection in Figure 1 .

sample legitimate connection sample exDoS attack connection
call dur #calls mem CPU cyc. pf fd. dur #calls mem CPU cyc. pf fd

SyS_getsockname 6.5𝜇s 1 0KB 0.01M 0 0 16𝜇s 1 0KB 0.01M 0 0
sock_recvmsg 789𝜇s 4 0KB 0.1M 0 1 22,939𝜇s 295 0KB 44M 1 1
sock_read_iter 34𝜇s 4 1KB 0.03M 0 2 8,750𝜇s 295 16KB 15M 0 1
sock_sendmsg 415𝜇s 2 1KB 0.1M 0 1 752𝜇s 2 1KB 0.1M 0 0
sock_write_iter 9.8𝜇s 1 1KB 0.01M 0 1 32𝜇s 1 1KB 0.01M 0 1

sock_poll 2,491𝜇s 3 0KB 3M 0 0 11,073,328𝜇s 97 0KB 55M 0 0
sockfd_lookup_light 53𝜇s 3 0KB 0.01M 0 0 120𝜇s 3 0KB 0.01M 0 0

Sys_shutdown 62𝜇s 1 0KB 0.01M 0 0 101𝜇s 1 0KB 0.01M 0 0

over many time periods to ensure that we learn diverse behaviors
of legitimate users.

When Leader’s models are learned, it switches to classification
mode, where it continuously performs attack connection identifi-
cation. For each external request, Leader compares resource use
patterns of the application that processes the request against its
application profile, and classifies the request as legitimate or attack.
Sources of attack requests are sent to the mitigation module for
blocking.

Behavior profiling. In absence of attacks, Leader runs in learn-
ing mode, building models of how legitimate users consume each
application’s resources.

Leader observes the process of serving each connection as a
sequence of connection life stages. A connection life stage is defined
as specific resource usage (i.e., time, memory, CPU cycles, page faults,
and open file descriptors), quantified by amount of resource used, as
a result of serving the incoming request. Each connection life stage
relates to a specific function call in (net/socket.c), issued in the
process of serving the request.

Leader employs machine learning to build an aggregate baseline
model for each application and for each connection life stage.

Attack request identification. Once Leader learns the baseline
models, it switches to running in the classification mode. During
classification, Leader works on live data, applying its models to
identify attackers.

We considered running Leader in the learning mode until an
attack is detected. Such on-demand engagement of classification
would limit any false positives. But continuous classification had
the advantage of early attack mitigation, even in the case of stealthy
attacks. Extremely low rate attacks, such as PHP Infinite recursive
calls denial of service [19] (discussed in detail in Section 4.1) can
create load on a Web server, which is equivalent to 0.53 million
requests, using just a single request. Running Leader in continuous
classification mode enables us to identify and block the attacker
after even a single malicious request.

Attack mitigation. Sources whose service requests consume
resources in a way that deviates from Leader’s models are identi-
fied as attackers. In our current prototype, we mitigate attacks by
blocking IP addresses of the attackers. However, alternative miti-
gation approaches are possible, such as: (1) derivation of payload
signatures from attack connections and their use in a firewall with
deep packet inspection, (2) connection termination (e.g., via TCP
RST), (3) dynamic resource replication, (4) program patching and

algorithm modification. We leave exploration of other mitigation
approaches as future work.
3.2 Assumptions and Limitations
As discussed in Section 2, Leader aspires to handle many variants of
exDoS attacks. This includes attacks that exploit vulnerabilities at
application, operating system, and protocol levels. Leader does not
handle flash-crowd attacks [53] that simply send more requests per
second than the server can handle, but do not consume resources
in a manner that differs from legitimate users’. We consider that
a powerful remote attacker (i) can send arbitrary requests to a
service hosting a vulnerable application, and (ii) is aware of the
application’s structure and vulnerabilities. Attackers can target
CPU, memory, file descriptors, bandwidth or other limited resources
in the host system.

We assume that each incoming connection carries one or more
application requests. Our connection life stages model how all re-
quests on the given connection are being processed by the applica-
tion, and how they consume resources on the server. For simplicity,
we use terms “request” and “connection” interchangeably in the
rest of the paper.

Leader attempts to quantify resource usage per an incoming
connection to the server by measuring resource usage of processes
and/or threads that serve requests received on this connection. Typ-
ically, application servers either spawn off a process or start a new
thread to handle each incoming connection. This is also the case
for Web server applications we tested – apache2, nginx and a web
server written in Flask framework. It is possible to design applica-
tions so that they process multiple incoming requests in a single
thread. This would make it harder to tease apart which resource
consumption is due to which connection. We leave handling of this
shared processing scenario for future work.

We assume an attacker model where remote attackers cannot
overwrite system binaries or modify the kernel of the system run-
ning Leader, i.e, we assume that Leader process is always trustwor-
thy and engaged.

3.3 Implementation
In this section we describe how we implemented Leader. Leader
contains five modules, illustrated in Figure 2 , that are each respon-
sible for a different functionality in exDoS attack mitigation. During
the learning phase, the Prober Module collects the data needed for
learning and passes it to the Builder Module. The Builder module
keeps building connection life stage sequences. Each sequence is a
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snapshot of the associated request’s resource consumption up to
the given moment in time. These snapshots are sent to the Learner
module to generate the baseline model of legitimate client behavior.
Together, Prober, Builder and Learner modules are engaged in be-
havior profiling. The baseline model is used by the Scoring module
in the classification phase to classify connections as legitimate or
attack. Finally, source addresses of connections that are classified
as attack are sent to the Mitigation module to mitigate the attack.
We explain each of these modules in more detail next.

Prober module. We use SystemTap [48] to trace and log in real
time in the kernel all function entries and exits in the socket library
(net/socket.c) in the Prober module. The module also records
the resource usage during each of these function calls. SystemTap
dynamically inserts our selected probes into kernel code using
Kprobes, and it is a reliable, widely used profiling tool. Another
option would have been to use extended Berkeley Packet Filter
(eBPF) [55], which is lighter-weight and safer to use. We leave
exploration of eBPF for future work, but note that newer versions
of SystemTap can internally use eBPF [36]. Thus we expect that
our implementation could easily switch to eBPF.

We use SystemTap to probe the application’s processing of in-
coming service requests at function call level. This does not require
any modifications to applications, but only to the server’s operating
system to install the loadable kernel module. SystemTap provides
the functionality to log the function call, entry and exit timestamps,
in micro-seconds precision, and the thread and process identifiers
(the task group ID of the current thread) associated with the func-
tion call. For each function call, SystemTap also allows us to log
the number of CPU cycles, page faults that occurred, file descrip-
tors opened, the amount of memory used, as well as the associated
source IP address and source port number. One can use log rotation
techniques [61] to limit the size of the real-time SystemTap logs.

Builder module. Using the data collected by the Prober mod-
ule, the Builder module builds life stages for the given incoming
connection.

In our prototype, we use the tuple <thread id, process id> to
uniquely identify a given external (incoming) connection to the
application at a given time. We later link this tuple to the source
IP address and source port of the external client, which we obtain
from the arguments of the sock_recvmsg call. We use the process
table to map the <process id> to the application name. A connec-
tion’s life stage corresponds to one function call of net/socket.c
and the resource usage (CPU cycles, page faults, file descriptors
and memory) measured by SystemTap for handling this call. As
time progresses, recent life stages are linked to the preceding ones.
Thus, each life stage pattern is actually a snapshot of the func-
tion call sequence and resource usages from the start of the given
external connection up to the given moment in time. The initial
call to sockfd_lookup_light marks the start of the sequence, and
it ends eventually with the call to one of the following functions:
SyS_shutdown, sock_destroy_inode, __sock_release or sock_close.
If serving a request requires access to the database, cache, and/or
any other internal services, the internal connection’s life stage
sequence is integrated into the main external connection’s life
stage sequence. We can link all these connections together if they
are served by the same process/thread that accepted the external

connection, or if the accept process/thread spawned the process-
es/threads for the internal connections. However, we currently can-
not account for internal resource consumption that occurs when
accept process/thread passes jobs via queues to another, already
running internal thread. We leave this for future work.

After each second, we snapshot each connection’s life stage se-
quence. If Leader is in the learning mode, we pass this snapshot to
the Learner module to create the baseline model. If Leader is in the
classification mode, we pass the snapshot to the Scoring module.
Figure 1 illustrates the connection life stages corresponding to serv-
ing of one sample legitimate (green line) and one sample attack (red
line) request. For the given incoming request, the resource usage
for each life stage at that time by the given process and/or thread
serving that request is shown in Table 1. The portion highlighted
in red color shows the portion of the life stage sequence that differs
between the attack connection and the legitimate connection. In
this example, the attack connection loops many times between the
calls sock_read_iter and sock_recvmsg. It occasionally departs from
this loop and cycles through sock_send_msg, sock_write_iter, and
sock_poll, then goes back to the loop. This pattern produces both
abnormal time spent in a given life stage and abnormal number of
visits to a given life stage.

Learner module. This module deploys machine learning to
learn separate baseline models for the following resources spent
per select connection life stage: system time, memory, CPU cycles,
the number of page faults and the number of open file descriptors.
This model also includes the number of visits for select life stages
and the presence or absence of some specific life stage transitions.

Learner first groups all the snapshots for a given application.
We mine the following features from each snapshot to build our
baseline model. Each feature contains measures listed below, for life
stages corresponding to the select function calls: sock_write_iter,
sock_read_iter, sock_recvmsg and sock_poll. The features we track
are: (a) total system time elapsed (in microsecond precision) in
the stage, (b) total memory consumed in the stage, (c) total CPU
cycles elapsed in the stage, (d) total page faults in the stage, (e) total
number of unique open file descriptors in the stage, (f) number
of visits to the stage and the presence or absence of two stage
transition sequences (s1) sock_read_iter → sock_sendmsg, (s2)
sock_read_iter → sock_poll. We learn separate models for (a) – (f)
and later utilize these models for classification. While it is possible
to use (a) – (f) together to learn a single baseline model, that leads
to overfitting, because of high dimensionality [59].

When deciding which function calls from net/socket.c to in-
clude in our features, we first examined all possible calls. However,
only the select four function calls (see Table 2), were showing dif-
ferences between legitimate and attack connections. These four
function calls are involved in starting the connection, receiving
service requests and sending the replies back to the client. When a
service request ties up resources at the server, this becomes visible
in the time elapsed and the resources consumed in these selected
life stages, or in the increase of the frequency of visits to these
stages. This way, we abstract the details of the server and the vul-
nerability being exploited. We further chose to track the presence
and absence of two key life stage transitions: sock_read_iter →
sock_sendmsg and sock_read_iter→ sock_poll. The first transition
indicates receiving a remote client’s request and responding to the

4



Leader: Defense Against Exploit-Based Denial-of-Service Attacks on Web Applications RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

start

SyS_getsockname

sock_sendmsgsock_write_iter
end

sock_recvmsg

sock_poll

sockfd_lookup_light

SyS_shutdown

sock_read_iter

Figure 1: Sample legitimate and attack connection life stages. Table 1 shows the time of each stage, how often it is visited in
the sequence, memory used, number of CPU cycles elapsed, number of page faults that occurred and the number of open file
descriptors for each stage. The red portion shows the sequence of calls in an exDoS attack that are different from the calls
observed on a legitimate connection. Different exDoS attacks may follow different sequences and consume different amount of
resources at different calls.

Prober

syscall1, measurements, treadID, pID, conn_info
syscall2, measurements, threadID, pID, conn_info

…

Builder

Learner

time
life stage part. 
memory
CPU cycles
page faults
file descriptors 

Aggregation

classifier Mitigation

1.2.33.18
178.33.89.21
98.31.75.132

blocklist
via ipset

LEARNING
legitimate requests

CLASSIFICATION
legitimate and attack requests

Figure 2: Leader’s operation: learning and classification

Figure 3: Experiment topology in Emulab: 5 physical attack-
ers (100 virtual attackers), 1 legitimate client (100 virtual
clients) and 3 servers on a LAN.

client. The second transition indicates continuous read from the
socket to obtain a large message from the client. Tracking more
sequences leads to overfitting, which makes it harder to detect new
attack variants. Tracking no sequences (or just one of the two we
chose) leads to misclassifications of some attack connections as
legitimate.

We standardize our features (by removing the mean and scal-
ing to unit variance). We then apply machine learning to learn
the baseline model. We focus on single-class learning, because we
wanted to model only legitimate traffic. Modeling only legitimate
traffic enables Leader to be attack-agnostic and potentially effective
against a variety of exDoS attacks. We evaluated 1-class SVM [27]
and elliptic envelope [38, 40] for our model building, and the elliptic
envelope had superior performance (see the Appendix, Table 8).

Elliptic envelope [38, 40] is an outlier detection approach, which
models target features as Gaussian distributions. We verified that
our features follow half-normal distribution, which is a subclass of
Gaussian distribution. Elliptic envelope gives a robust co-variance
estimate of the data. It defines the shape of the data, creating a
frontier that delimits the contour, that is elliptical in shape. Basically,
it fits the tightest Gaussian (smallest volume ellipsoid) that it can
over the data points, while discarding some fixed fraction of outlier
points specified by the user [37]. This Gaussian forms a decision
boundary. The trained model stores the estimated co-variance and
the decision boundaries for each feature.
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Table 2: Leader tracks the highlighted function calls or uses
them to identify a sequence of calls.

candidate function calls
sock_lookup_light sock_alloc_inode

sock_alloc sock_poll
sock_alloc_file move_addr_to_user

SYSC_getsockname SyS_accept4
SYSC_accept4 SyS_getsockname

sock_write_iter sock_sendmsg
sock_read_iter sock_recvmsg
__sock_release Sys_shutdown

sock_close sock_destroy_inode

In current implementation, the duration of our learning stage de-
pends on the size of our training set. In actual deployment, learning
should end when the model has stabilized, and no further changes
are detected with new input samples. Section 8 lists the amount of
time it requires to train our model for different sizes of the training
sets.

Scoring module. After learning, Leader switches to the classifi-
cation mode. In classification mode, the Scoring module uses elliptic
envelope to classify each connection as either a legitimate connec-
tion or an attack connection. Elliptic envelope uses the Mahalanobis
distance in identifying outliers, which has been widely used in liter-
ature for identifying outliers in multivariate datasets [11]. During
classification, elliptic envelope computes the Mahalanobis distance
for each input, using the co-variance learned by the model. If this
distance lies within the decision boundaries, the input is considered
to be in line with the model. Otherwise it is considered anomalous.
The same process is repeated for all six individual models ((a) –
(f)) that we learned during the learning phase. We aggregate indi-
vidual model classifications into a single output, by classifying a
connection as anomalous if at least one model returns anomalous
classification.

Each connection is classified every second so as to terminate the
attack connections as soon as possible. We considered and evaluated
two designs for source classification:

• Liberal design assumes that each anomalous connection is
attack connection. This approach ensures fast decision time,
but if there are any errors in classification, a legitimate source
may become blocked by the module.

• Conservative design requires that a connection receives some
portion of anomalous classifications before it is regarded
as attack. This approach should reduce misclassification of
legitimate connections, at the expense of longer decision
time.

When scoring module identifies a connection as attack, it forwards
its source IP address to the mitigation module.

Mitigation Module. Our current implementation of the mit-
igation module adds each IP it receives from the scoring module
to the IP blocklist. We use the ipset utility in the Linux kernel to
implement the blocklist. Blocking rules remain in place for a custom
duration (e.g., 10 minutes), which can be configured by the system

administrator. Long attacks would thus lead to cyclical blocking of
attack IP addresses.

3.4 Deployment Considerations
We now discuss some practical considerations for deployment of
Leader to protect a Web server.

User identification. While we use IP addresses for identifying
attack sources, using Web cookies could improve classification
accuracy, because it would more accurately identify users with
dynamically assigned IP addresses, or users which may share an
IP address with others (e.g., behind a network address translator).
This optimization is specific to Web servers, as other applications
may not have an equivalent of a cookie. We leave this optimization
for future work.

Adversarial data. Leader requires training data of legitimate
connections and needs to be trained per application server. Leader
requires training data that covers periods of both low and high
server load. This is because many servers may go through a dif-
ferent sequence of system calls when the load is high, engaging
additional optimizations. High load may also slow down an appli-
cation’s processing speed, since it may have to wait for resources
to be made available for use in order to finish its processing. Such
disturbances, may also lead the legitimate connections’ resource
consumption patterns to deviate, which is important to capture in
the models. The richer data we have for training, the better we can
protect legitimate connections from misclassifications (Section 8).
Attackers could potentially compromise the training process and
introduce adversarial data to influence learned models. For example,
if low-rate attacks were introduced during training this could make
our models unable to accurately detect attacks during classification.
One way to handle this threat is to sample training data at random,
over multiple days or weeks. Another way is to exclude outliers, by
setting an outlier fraction (contamination parameter) value while
training the baseline model. A third approach to handle this threat
is to use techniques such as machine unlearning [6]. We evaluate
the effect of adversarial data injection for an attack scenario in
Section 8.
Deployment cost and complexity. We envision that Leader
would be deployed at an application server, as a standalone ap-
plication. Leader could run at the server at all times, since it is
non-intrusive and not in line with traffic.

Web servers that use a proxy or a load-balancer. Web servers
that use a proxy would need to run Leader on all the backend servers,
as well as on the proxy. The proxy would have to be trained sep-
arately from the backend servers, since they experience different
resource use patterns when handling each connection. On identifi-
cation of a malicious connection at the backend level, the backend
server would have to signal to the proxy to mitigate the attack
(e.g., block the attack source). Web servers that use a load balancer
only need to run the Mitigation module on it, and Scorer modules
from backend servers need to communicate attack sources to this
Mitigation module.

Windows-based servers. Currently, our prototype supports
only Linux and Unix-like operating systems, because our implemen-
tation uses Linux-specific tools (SystemTap, ipset, etc.) We leave
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exploration of how to port Leader to other operating systems for
future work.

Attackers spoofing IP addresses. We focus on Web server
exDoS attacks. The applications use TCP for communication, which
requires a successful 3-way handshake for payload exchange, and
exDoS attacks must use specific payload to exploit a vulnerability.
Thus IP spoofing cannot be used in exDoS attacks on Web servers.

Attackers use many sources. Distribution of attack traffic
across many sources does not affect Leader, because our models
model per-connection behavior, and each exDoS connection will use
resources in abnormal manner. Distribution could affect mitigation
if the attacker can easily move on to new sources after Leader
blocks the old ones. While this is possible, it is not trivial for the
attacker. New sources have to be acquired (e.g., rented), set up
and synchronized. Depending on attack’s duration, and because
our detection delay is low (around 6 attack requests), the attacker
would use only a small fraction of their botnet at each time period,
while spending effort and money to maintain a large infrastructure.
A target protected by Leader would be far less attractive for the
attacker, than a target protected by conventional DDoS defenses.

Sharing the same IP. If an attacker shares an IP with a legit-
imate user of the target server, which we expect to be rare, both
would be blocked. This is unfortunate, but necessary to protect the
server and enable it to serve any legitimate users.

Shared environment and network delays. An attacker could
attempt to make Leader misclassify legitimate connections as at-
tack by creating heavy load on the server, using non-exDoS attack
vectors such as volumetric DoS attacks. Each application runs as a
separate process/thread on the server and we monitor time each
given process/thread spends in a given function call, as it has con-
trol of the CPU. Thus we measure an application’s system time
(not real time) to handle a given processing task. This time does
not include network delays nor is it impacted by other applications
on the same host. For this reason, an attacker cannot influence
legitimate connection classification by generating heavy load on
the server.

4 EVALUATION
In this section we describe our evaluation setup and our experi-
ments, and we demonstrate how Leader defends against exDoS
attacks.

4.1 Evaluation Setup
To create realistic Web application traffic, we wanted to mimic
realistic diversity of static and dynamic content, the processing
time of dynamic content, and the realistic user behavior. Realistic
content and user interaction are important for evaluation, because
this diversity of legitimate requests makes it more challenging to
identify exDoS attack requests.

Realistic content. To obtain realistic content, we mirror dy-
namic content for two popular Web sites, for which the server
setup is publicly available and content is copyright-free: Imgur,
a picture-rich Web site, and Wikipedia, a Web site with textual
content. Our selection of Web sites to replicate gave us not only
content diversity, but Web server diversity as well. Imgur runs on
the apache2 HTTP Server. Wikipedia could handle more requests

per second with nginx compared to apache2, so we used nginx
in our tests. Different content on sites and different implementa-
tions are likely to lead to different legitimate user access patterns,
and processing load on the server. We download each full site and
deploy the site’s original configuration and scripts on our server
within Emulab testbed [58]. During evaluation, all site content is
generated dynamically, by pulling page information from our target
server’s database, using the original site’s scripts. We enrich this
setup with a basic, vulnerable Flask-based server to test one specific
attack variant – maliciously crafted URL attack on Flask (MCU).

Realistic legitimate traffic. To generate realistic legitimate
requests, we first crawl the full Web sites using the Selenium-based
[41] crawler, to learn all possible legitimate request patterns. For
dynamic pages, we analyze what kind of arguments they require
(e.g., string vs integer) and fuzz the inputs during crawling. Ad-
ditionally, we engage 350 users from Mechanical Turk service to
browse our Web sites and we collect their requests to further en-
rich the legitimate request patterns. We have a total of over 300K
legitimate requests for Imgur and over 500K legitimate requests
for Wikipedia. We utilize 70% of the data for training and 30% of
the data for testing. We generate legitimate requests by replaying
selected records from our datasets in a controlled environment—
the Emulab testbed [58]—and launch attacks on our servers on the
testbed. Each site we use is vulnerable against Slowloris attack
without modifications. To make sites vulnerable to other variants
of exDoS attacks, we add five Web pages with vulnerabilities, one
per attack variant.

Legitimate traffic generator. During each experiment, we re-
play the 30% of the legitimate requests that we set aside for testing,
which we had collected using (a) the selenium-based [41] crawler,
(b) Amazon Mechanical Turk workers. We wrote a custom traffic
generator, which extracts URL sequences and their timing from
our testing dataset, and then chooses when to start each full-length
sequence depending on the desired number of active users. For ex-
ample, if we want to have 10 active users at all times, our tool will
extract 10 full-length sequences from our dataset, and replay each
using a different source IP address. We adjust IP addresses assigned
to machines in our experiments, and the routing, to ensure that
each machine can maintain two-way communication with each
server. Traffic is replayed at the application level. Thus any packet
drops are properly handled by the underlying TCP protocol. When
a sequence completes, another sequence is selected and another
IP address becomes active. In our experiments, we maintain 100
active, simultaneous legitimate clients throughout each run, that
send requests at the rate of 1 request per second.

Experiment topology and scenarios. Our experimental topol-
ogy is shown in Figure 3. It has 1 physical attack node (that emulates
100 virtual attackers wherein each virtual attacker is assigned a
different IP address), 1 legitimate client node (emulating 100 legit-
imate users at a time wherein each legitimate user is assigned a
different IP address) and 1 node each for the mirrored servers Imgur,
Wikipedia and Flask. All nodes were of type d820 on Emulab, with
32 cores and the Ubuntu 18.04 OS. We further fine-tuned operating
system parameters on nodes to maximize the request rate that each
client could generate, and to maximize the request rate that our
servers could handle. We evaluate Leader by launching various
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exDoS attacks during classification. Each virtual attacker (one dis-
tinct source IP) sends attack traffic at a low rate of one request per
second. We use the aggregate attack request rate similar to that of
the aggregate legitimate request rate, i.e., close to 100 requests per
second. This means that 100 virtual attackers are active at the same
time in each experiment.

Attack variants. We investigate the following exDoS attacks:
(1) Slowloris attack (SL) [62]: This attack uses partial HTTP

requests to open connections between the attacker and the tar-
geted Web server. The attacker keeps those connections open for as
long as possible, thereby overusing socket descriptors at the target,
which makes the target unable to serve legitimate clients.

(2) Hash Collision Attack (HC) [16, 57]: A hash table is used to
store a series of keys and values, and a hash function is used to
convert each key to a bucket where the value will be stored. When
the function maps two different keys to the same bucket, there is
a collision, which is usually handled by employing a less efficient
structure to store multiple key/value pairs, such as double chaining
or linked list. Buckets with many collisions experience much slower
lookup, insert and removal of values. If a Web application uses
a predictable (weak) hash function and derives keys from user
input, attackers can craft Web requests with colliding keys, thus
dramatically slowing down the server.

(3) Regular Expression Denial of Service Attack (ReDoS) [54]: In a
ReDoS, attackers force a situation where the regex evaluator, for
example, preg_match() for PHP, gets stuck evaluating a string and
runs for a long time. The inordinately long run time is caused by
backtracking, as multiple matches are attempted. If a Web applica-
tion employs regex matching on user input, and the attacker knows
the specific regular expression used, they can craft inputs that take
inordinately long time to process, thus causing ReDoS.

(4) Attack using preg_replace() PHP Function Exploitation (PH-
PEx) [56]: The PHP function preg_replace() can lead to a remote
code execution vulnerability if the Web application passes user in-
put to preg_replace() and if that input includes executable PHP
code. This vulnerability can be used to launch an exDoS attack, if
user input includes many PHP function calls. PHP versions prior to
version 5.5.0 have this vulnerability. In our experiments, we used
PHP 5.3.29 to reproduce this vulnerability.

(5) Infinite recursive calls denial of service (IRC) [19]: Passing a
PHP file as an argument to itself can in some cases lead to infinite
recursive call. If the Web application passes user input to a PHP
file, the input containing that file’s name can trigger the IRC attack.
For example, article.php? file=article.php is an illustration
of an attack request. The Web application runs until the Web server
hits the maximum execution time for a script and terminates.

(6) Maliciously Crafted URL Attack on a Flask Application (MCU):
Flask [60] is a popular Python Web framework. It is a third-party
Python library used for developing Web applications. We crafted an
implementation of a vulnerable Web application in Flask to demon-
strate that Leader supports a variety of Web server applications and
frameworks. Our application is shown in Appendix, Section 11.1.

Attack traffic generator. For different attack scenarios, we use
different attack tools. We modified the source code of the tool PyS-
lowLoris [43], to launch the Slowloris Attack. Similarly, we modified
the source code of the tool php-dos-attack [28], to launch the Hash
Collision Attack. In each case we use multiple IP addresses on the

same physical node to emulate multiple attackers. For other exDoS
attacks, our attack traffic generator is a modified httperf [31] tool.
We added the ability to choose source IPs from a pool, and to select
requests for each IP from a given sequence, in specified order. Thus,
our evaluation presents Leader’s results on different exDoS attacks
launched by multiple attackers, each using a different IP address.
Leader’s evaluation setup is comparable to, and in some cases more
sophisticated than, the evaluation setup used by closely related
prior work, shown in Table 3.

4.2 Limitations
There are several limitations of our evaluation scenarios. First, our
topology is small and this limits the scale of our tests (e.g., number
of requests per second and how many separate IPs we can emulate).
Since we focus on low-rate, exDoS attacks, this limitation does not
impact realism of our evaluation.

Second, we replicate only two Web sites’ contents and the Web
server applications – apache2, nginx and a Flask-based application.
While we would have liked to replicate other popular sites, like
Facebook or Google, this impossible as their source code is private,
very complex and supported by large datacenters. Our evaluation
setup is comparable to other published work on this topic (e.g.,
Rampart [30], Cogo [15] and Finelame [13]). Evaluation on more
applications would require us to identify more flavors of exDoS
attacks for the specific target application, and collect a diverse, real-
istic set of legitimate traffic that interacts with the realistic content
of the target application using remote volunteers. We investigated
this direction, but could not identify sufficient exDoS attack variants
for non-Web applications, and thus we leave it for future work.

Third, a portion of our legitimate users’ traffic comes from our
Amazon MTurk study, and it may not be realistic. However, Leader
models do not rely on a user’s request sequence, but on the diver-
sity of processing times and system calls for the pages visited by
legitimate users. In our study users explored many of the pages
on the replicated sites, and thus provided a good blend of request
variety. Our full crawl of the Web sites provided a comprehensive
dataset to complement Amazon MTurk dataset.

5 RESULTS
In this Section we show results for Imgur running on apache2 (and
Flask for MCU attack). Results for the Wikipedia server running
on nginx show similar findings.

5.1 The Liberal Design Scenario
In the liberal scenario, Leader has an aggregate accuracy of 99%
to 100% in identifying the attacker IP addresses and an aggregate
accuracy of 96.6% to 99.9% in identifying the legitimate IP addresses,
across the six exDoS attack scenarios used in our evaluation. We
summarize the results in Table 4. On the average, Leader can iden-
tify and block an attacker after 1–2 requests in the liberal design
scenario. Attack variants ReDoS, PHPEx and IRC are more challeng-
ing for Leader, resulting in false positives (legitimate connection
identified as attack) higher than 1%. Since such high false posi-
tives are undesirable, we conclude that liberal design scenario is
impractical for real Web server deployment.
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Table 3: Comparing Leader’s evaluation setup with closely related prior work.

defense applications tested machines used leg. requests attacks

Rampart [30] Apache2 on
Drupal, Wordpress

2 (1 for server; 1 for
generating both legitimate

and attack traffic)

Crawled all the endpoints
of each web application

requests for replay, combined
with humans generated requests.
Legitimate traffic involves up to
128 user instances, with at least

0.1s pause between any 2 requests

Tested attack variants:
XML-RPC and PHPass.

It maintains up to 30 attacker
sessions, with 0.17
requests/second

to 1 requests/second

Finelame [13] Apache2, Node.js,
DeDoS

2 (1 for server; 1 for
generating both legitimate

and attack traffic)

Generated using Tsung [32]
(250 requests/second to

750 requests/second)

Tested attack variants: ReDoS,
Billion Laughs and SlowLoris.
Attack Rate: 1 to 15 malicious

requests/second

Cogo [15] Apache, OpenSIPS

3 for Apache (1 for server;
1 for generating legitimate
and 1 for generating attack

traffic)

Generated using Choi-Limb [8]
(100 benign clients (up to

100 requests/second)

Tested attack variants for
Apache: Slowloris and Slowread.

Attack Rate: 1 to 100
connections/second

Leader

Apache2 on mirrored
server Imgur, Nginx
on mirrored server

Wikipedia and a Flask
application

3 (1 for server;
1 for generating legitimate
and 1 for generating attack

traffic). We use multiple IP addresses
on the same physical node to emulate

multiple attackers and
legitimate clients.

Crawled the full Web-sites
of each web application to collect

legitimate requests, combined
with humans generated requests fetched
using Amazon Mechanical Turk workers.
100 active, simultaneous legitimate clients

send requests at the rate of 1 request/second.

Tested attack variants: SL, HC,
Re-DoS, PHPEx, IRC and MCU.

Attack Rate: 100 requests/second.

5.2 The Conservative Design Scenario
Our conservative classification approach reduces false positives, by
only classifying a source as attack if its connections receive more
than a certain percentage of anomalous connection classifications.
We define a classification threshold as the percentage of additional
anomalous connections (after the first anomalous connection) from
the same source, required for the source to be labeled as attack.
Further, we must observe some minimum number of connections
from a given source before we apply our classification threshold
to classify the source. We call this value minimum sequence length.
For example, if our minimum sequence length is 3 and our clas-
sification threshold is 0.5 we must observe at least 3 connections
from a given source before we attempt to classify it. Assuming that
there is one anomalous classification, we need another one (1 out
of additional 2 connections) to label this source as attack. We plot
ROC curves for the different sequence lengths and different values
of classification threshold in the Appendix, Figure 6 for sequence
lengths 3, 4, 5, 6 and 7. The area under the ROC curves is the largest
for sequence length 6 and stays the same for sequence length 7.
Figure 4 in the Appendix, shows the optimal classification threshold
versus sequence length, based on the cutoff points. While the opti-
mal classification threshold is high for shorter sequences, it dips as
the sequence length increases. Since the area under the ROC curves
is the largest for sequence length 6, we use the corresponding classi-
fication threshold of 20% in our evaluation. Leader achieves around
99% accuracy for both legitimate and attack source identification,
but it takes about 6 requests per source for classification. This is
expected as we trade off detection delay for higher accuracy.

5.3 Feature Selection
To understand the importance of our selected features (see Section
3.3), we further investigated if only system time (just feature (a))
could be enough to detect and block attack connections. We re-
peated our experiments with liberal design and trained and tested

using only feature (a). Time-only detection was indeed sufficient
to detect all attackers in our scenarios, but detection was delayed
around 1–2 seconds (11% of time to detect an attacker), when com-
pared to the all-feature model. We then hypothesized that time-
based detection may struggle when durations of legitimate and
attack connections were similar. We modified the Slowloris attack
to terminate its connections after five seconds, thus putting the total
connection duration in range with some computationally-expensive
legitimate connection durations in our dataset. We also increased
the frequency of Slowloris attack connections to keep the load on
the server comparable to our original attack scenario. Time-only
detection failed to detect any attack connections, as expected, while
all-feature detection was successful in identifying and blocking all
attackers.

6 COMPARISONWITH RELATEDWORK
We evaluate two of the closely related works using the same ex-
perimental setup and attack scenarios that we use for Leader’s
evaluation.

Rampart [30]: Meng et al. present the defense mechanism Ram-
part, that protects PHP-based Web applications from sophisticated
CPU-exhaustion DoS attacks. Rampart uses statistical methods and
function-level program profiling. It builds a statistical model of
the CPU time consumed by each function call of the application
process, and uses Chebyshev inequality to detect when a function
spends more CPU time than its model indicates. These function
calls are specific to the protected application, unlike our function
calls that capture any invocation of functions in net/socket.c, i.e.,
any socket communication on the server, and thus protect a variety
of Web applications in our evaluation. Rampart probabilistically
terminates suspicious connections after they overspend CPU time,
and can also devise source-IP blocklists and payload signatures for
future attack filtering. Leader differs from Rampart in the way it
models legitimate connections (system function calls and wall-clock
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time and call frequency vs Rampart’s CPU time and application
function calls), and in the way it detects anomalies (elliptic enve-
lope vs Rampart’s statistical detection). Because Leader models
system function calls it is more broadly applicable to protect any
Web application on the server.

We evaluate Rampart [29] using the same settings as for Leader’s
evaluation. Table 6 shows the accuracy of Rampart over different
attack scenarios. While Rampart can handle HC, Re-DoS and IRC
very well, it fails to identify attackers in the SL attack. Rampart
only identifies the anomalies related to the CPU time spent inside
each PHP function, but exDoS attacks do not have to overspend
CPU time to deny service. For example, in the SL attack scenario,
each attack connection to the server remains idle waiting for the
complete request to arrive in order for it to be processed. Moreover,
Rampart works only on PHP-based servers and the current code [29]
supports PHP 5.6 and PHP 7.0. This is the reason why Rampart
fails to detect our PHPEx and MCU attacks. Leader does not have
such restrictions and dependencies. To summarize, while Leader
and Rampart have a comparable false positive and false negative
rates, Leader detects and mitigates a wider range of exDoS attacks
using more flexible models.

Finelame [13]: Demoulin et al. propose Finelame [13], which
leverages the operating system’s visibility across the entire soft-
ware stack to instrument key resource allocation and negotia-
tion points. It leverages extended Berkeley Packet Filter to attach
application-level probes to some of the key request processing func-
tions. Finelame trains a K-means-based model of resource utiliza-
tion, which includes models of time spent in each application-level
function, memory use, file descriptor use, page faults and total time
to serve a request. The model parameters are then shared with the
resource monitors, which use them to detect exDoS attacks and
produce alerts containing process and thread IDs. Leader compares
favorably to Finelame. Leader is easily portable to different appli-
cations, while Finelame requires instrumentation of each specific
application (e.g., it would instrument apache2 separately from ng-
inx and Flask in our experiments), and adds 4–11% instrumentation
overhead. Further, Finelame does not provide mitigation, while
Leader has an effective mitigation.

We evaluate Finelame [13] using the same settings that we use
for Leader’s evaluation, and using an already instrumented apache2
binary, shared by Demoulin et al. Table 6 shows the accuracy of
Finelame over different attack scenarios. Finelame can correctly
distinguish legitimate from attack connections only during SL and
HC attacks. In other cases it labels all connections (legitimate and
attack) as attack. The reason for this are unsophisticated Finelame
models, which cannot distinguish legitimate from attack connec-
tions under heavy server load. We verified with Finelame’s authors
that their models suffer from this deficiency.

Cogo [15]: Elsabagh et al. propose Cogo, which builds behav-
ioral models of network I/O events. It employs Probabilistic Finite
Automata (PFA) over these events to recognize future resource ex-
haustion states. Like Leader, Cogo’s tracing of events spans the
entire code stack from userland to kernel. For attack mitigation,
Cogo kills the process whose network I/O events depart from the
PFA model. We evaluated Cogo on the mini_httpd server, based on
the instructions provided by the Cogo’s authors.

The rest of our evaluation settings were the same as for Leader.
Cogo was successful in detecting the start of the attack, and identi-
fying process and thread ID for the mini_httpd process. Unfortu-
nately, killing that process also denies service to all the legitimate
users of the Web server. Unlike Cogo, Leader is able to identify
attack sources and block them, allowing legitimate traffic to pro-
ceed unharmed. Due to Cogo software’s current implementation
limitations, we could not deploy Cogo in our evaluation scenarios
to perform a detailed comparative analysis.

7 SENSITIVITY
During the learning phase, elliptic envelope uses multiple parame-
ters to learn the baseline model. The key parameter is contamina-
tion, which denotes the proportion of outliers allowed in the input
dataset. Another parameter is assume_centered, which determines
whether the covariance estimates are to be directly computed with
the FastMCD algorithm [39] or not. The parameter support_fraction
determines the proportion of points to be included in the support
of the raw MCD (minimum covariance determinant) estimate. If
set to False, the minimum value of support_fraction will be used
within the algorithm which is: (number of features + number of sam-
ples + 1) * 0.5. The parameters and values we used for learning the
model are: contamination = 0.002, assume_centered = False and sup-
port_fraction = False. Table 7 in the Appendix, shows the precision
and recall values obtained for Leader for the Slowloris attack ex-
periment for various parameter values, and for liberal classification
approach. By setting the contamination to be 0.002, Leader could
achieve the best overall accuracy. Additionally, assume_centered
and support_fraction set as True as well as False do not affect the
accuracy. We set them as False and directly compute the covariance
estimates using the FastMCD algorithm [38].

We measure the sensitivity of Leader’s model by varying the
number and type of legitimate connections used for training the
model. Table 5 shows the training time and model’s sensitivity
for the MCU attack scenario on varying the number of connec-
tions. The results indicate that: (a) the size of the training data is
directly proportional to Leader’s classification accuracy. (b) captur-
ing and including the data of legitimate users’ connections when
the application is under load, helps prevent the misclassification of
legitimate users. The time required to train the model is lower than
10 seconds for all the scenarios we evaluated. We observe similar
trends for other exDoS attack scenarios.

We further test resilience to model poisoning (adversarial data)
during training, assuming that we use the contamination parameter
value of 0.1 (10%), and vary the portion of the training data that
is poisoned. Results are shown in the Appendix, Figure 5. There
is almost no effect on the classification accuracy if the percentage
of adversarial data injection does not surpass the contamination
parameter value. However, once it exceeds the contamination pa-
rameter value, the model’s accuracy for legitimate user classifica-
tion declines sharply. Machine learning with adversarial data is
an open research problem. We expect that we will be able to use
solutions proposed by machine learning researchers to improve
Leader’s training and resilience to adversarial data injection, such
as [6].
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Table 4: Leader’s classification accuracy, avg over 10 trials, for the liberal and the conservative scenario.

measure/scenario liberal conservative
SL HC Re-DoS PHPEx IRC MCU SL HC Re-DoS PHPEx IRC MCU

true positive 99.9% 99.8% 99.6% 99.7% 100% 99.9% 100% 100% 100% 99.9% 100% 100%
true negative 99.1% 98.1% 98.7% 99.4% 96.6% 99.9% 99.4% 98.9% 99.4% 99.8% 99.2% 99.9%
false positive 0.9% 1.9% 1.3% 0.6% 3.4% 0.1% 0.6% 1.1% 0.6% 0.2% 0.8% 0.1%
false negative 0.1% 0.2% 0.4% 0.3% 0% 0.1% 0% 0% 0% 0.1% 0% 0%

att. req. before block 1.65 1.92 1.27 1.25 1.44 1.18 5.17 5.32 5.50 5.02 5.84 5.07

Table 5: Training time and model’s sensitivity for an MCU attack scenario on varying the number of connections.

Learning Classification
leg. traffic
(100 rps)

leg. traffic
under load (1,000 rps)

conns conns
training
time

true positives true negatives100 0 0.05s 100% 82.7%
1,000 0 0.05s 100% 82.1%
10,000 0 1.5s 100% 84.3%
50,000 0 4.9s 99.9% 87.4%

100 100 0.09s 100% 86.3%
1,000 1,000 0.58s 99.8% 97.2%
10,000 10,000 2.1s 99.4% 98.2%
50,000 50,000 7.5s 99.6% 98.7%

8 OPERATIONAL COST AND SCALABILITY
Leader’s operational cost is modest and scales sub-linearly with
the number of incoming concurrent connections. Its core engine
is written in C++. We use the tool SystemTap [48] for tracing and
logging. Gebai et al. [18] show that the average latency for a Sys-
temTap’s tracepoint in Kernel Space is 130 nanoseconds, and these
are the tracepoints we use in Leader.

We measured the time (in seconds) that the Web server takes
to serve each of the requests to the homepage of the mirrored
Imgur Web server both with and without SystemTap probes and
Leader, under a heavy request load of 1,000 requests per second.
The average time to process a request was 0.3239 seconds with
SystemTap probes and Leader on, and 0.3223 seconds without Sys-
temTap probes and without Leader. Thus, SystemTap and Leader
jointly add less than 0.5% overhead to the server’s latency.

Leader’s elliptic envelope model requires a training time of 7–
10 seconds for training on 100,000 legitimate users’ connections.
One could train the baseline model for millions of legitimate users’
connections within a few minutes. On the average across 100,000
connections, Leader took around 0.5 ms for classifying a connec-
tion. Since Leader does not run on the request-processing path
of an application, the classification delay is invisible to the user.
Leader stores some state per connection and per source of incoming
request.

The aggregate of total RAM usage by Leader, including System-
Tap and in-memory elliptic envelope model was 2.73 GBs. Maintain-
ing a short-lived state (until the connection finished or its source is
blocked) about each active connection is thus affordable even for
real-time deployment of Leader on popular sites that serve millions
of users daily. Leader’s state consists of several measures of resource
consumption, i.e. a few integers per call, added cumulatively. Once

a connection finishes, we clear its state. Our current model requires
less than 0.5 MB per connection, thus a low-end server with 16GB
of memory could accommodate tens of thousands of connection
life stage sequences. This is in line with the amount of connections
a typical Web server can serve simultaneously.

Extremely active Web sites, like Amazon can see about 4 M
active clients per hour [45, 46], thus a few GBs would suffice to
hold statistics for all active clients.

We evaluate scalability of Leader’s mitigation using iptables
and ipset. We artificially insert a diverse set of IP-rules and send
packets matching these rules at a high rate. This emulates the
situation when a server is under attack by numerous bots. We issue
Web page requests and measure the time it takes to receive the
reply. If the blacklisting places a heavy burden on the server, we
would notice a slowdown in Web replies as the firewall’s rule table
grows. For space reasons we summarize our results. iptables only
add 5% of overhead when there are more than 10 K rules. However,
when the number of rules exceeds 1 M IPs the processing time
explodes. On the other hand, ipset adds 5–8% to the processing
time, as the rules table grows from 100 K to 1 M, and no measurable
delay for fewer than 100 K rules. Thus, Leader can block at least
one million IPs using ipset.

9 RELATEDWORK
Most defenses handle exDoS attacks piecemeal, focusing on just
a single variant, e.g., [3, 3, 4, 9, 17, 42, 44]. This piecemeal han-
dling results in numerous application-specific and attack-specific
defenses, which are then slow to transition to practice, because
they only handle one attack variant. Another way to handle exDoS
attacks is to treat them as application-level attacks and look for
anomalies in the payload of the incoming service requests. This
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Table 6: Comparison with related works over the same attack scenarios.

Rampart Finelame Leader
(conservative)

scenario TP TN FP FN TP TN FP FN TP TN FP FN
SL 0% 100% 0% 100% 94.4% 99.9% 0.1% 5.6% 100% 99.4% 0.6% 0%
HC 100% 100% 0% 0% 100% 100% 0% 0% 100% 98.9% 1.1% 0%

Re-DoS 100% 100% 0% 0% 100% 0.02% 99.98% 0% 100% 99.4% 0.6% 0%

PHPEx
current code does not

support vulnerable PHP
versions

99.9% 0.04% 99.96% 0.1% 99.9% 99.8% 0.2% 0.1%

IRC 99.7% 100% 0% 0.3% 99.9% 0.02% 99.98% 0.1% 100% 99.2% 0.8% 0%

MCU Rampart supports PHP
applications only 100% 0% 100% 0% 100% 99.9% 0.1% 0%

is the approach taken by DDoS defense providers [23]. It requires
costly deep-packet inspection and it is incomplete; it will detect
some attacks that require malformed content, but will miss others
that rely on timing and send well-formed payloads (e.g., Slowloris).

Several defenses take a more general approach to DDoS attack
handling. For example, Hoque et al. [20] develop a statistical mea-
sure called Feature Feature Score (FFSc) for multivariate data anal-
ysis, to distinguish DDoS attack traffic from normal traffic. They
use three traffic features: entropy of source IPs, variation of source
IPs and packet rate. They build profiles of these features during
normal operation and detect attack traffic as the traffic that devi-
ates from these profiles. While this approach will detect flooding
attacks, it may not be so effective against exDoS attacks, because
they can be launched at a much lower rate. Such a low rate may
not significantly change traffic features monitored by FFSc.

Xiang et al. [63] propose using the generalized entropy metric
and the information distance metric to detect low-rate DDoS attacks,
by measuring the difference in these measures between legitimate
traffic and attack traffic. They then engage IP traceback to trace
the attack close to the sources, and filter it there. Like Hoque et
al. [20], they consider a limited set of features and thus may miss
attacks when attack and legitimate traffic are very similar, or may
mistakenly drop legitimate traffic when it changes due to normal
fluctuations. Their response strategy is also limited, as attack often
comes from far away and traceback is not supported on the Internet.

There has been research work done in the area of finding vul-
nerabilities [7, 34, 35], that can be exploited to launch sophisticated
exDoS attacks. This work is complementary to Leader. Patching
helps prevent exDoS attacks, while Leader helps detect and neutral-
ize those attacks that exploit new or yet unpatched vulnerabilities.
In additon to Cogo [15], Finelame [13] and Rampart [30], which
we already discussed in Section 4, another general exDoS defense
approache is DeDoS by Demoulin et al. [14]. DeDoS is a platform
for mitigating asymmetric DoS attacks. DeDoS offers a framework
to deploy code in a modular fashion. If part of the application stack
is experiencing a DoS attack, DeDoS can massively replicate only
the affected component, potentially across many machines. This
allows scaling of the impacted resource separately from the rest
of the application stack, so that resources can be precisely added

where needed to combat the attack. Leader is complementary to De-
DoS, as it looks to filter attack traffic rather than increase available
resources.

10 CONCLUSIONS
Exploit-based DDoS (exDoS) attacks exploit some existing vulner-
ability at the target application, and can be effective at very low
rates. Volumetric DDoS defenses fail to handle exDoS attacks, and
current exDoS defenses only handle a few variants. In this paper, we
introduced Leader, a novel approach for application-agnostic and
attack-agnostic detection and mitigation of exDoS attacks. Leader
operates by learning normal patterns of network and system-level
resource usage when an application serves legitimate external re-
quests. These baseline models are then used to detect external con-
nections that use resources in anomalous manner. Leader blocks
sources of such anomalous connections. We implement and evalu-
ate Leader for protection of Web applications. Our results show that
Leader has an aggregate accuracy of around 99% for both legitimate
and attack connections, across six different exDoS variants used
in our evaluation. Leader also has modest operating cost and adds
only 0.5% of delay to Web request processing. Leader compares fa-
vorably to related work (Rampart and Cogo), and is more portable
to different applications and attack variants.

Our future work includes evaluating Leader for protection of
other popular applications, such as DNS servers, VPN proxy servers
and mail servers. We would also like to explore if Leader can be
used to protect against OS-based exDoS variants, such as TCP SYN
floods or IP fragmentation attacks. It is likely that we would need
to enrich Leader’s monitoring with other system function calls,
in addition to net/socket.c to make it effective against OS-level
exDoS attacks.
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Table 7: Precision and recall values when varying the con-
tamination parameter of elliptic envelope.

Contamination Precision Recall
0.000 0.999 0.936
0.002 0.990 0.992
0.005 0.982 0.999
0.01 0.969 0.999
0.03 0.941 0.999
0.05 0.911 1
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sequence lengths that lead to around 99% true positives and
around 1% false positives.
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11 APPENDIX
11.1 Maliciously Crafted URL Attack on a Flask

Application (MCU)
We crafted an implementation of a vulnerable Web application in
Flask to demonstrate that Leader supports a variety of Web server
applications and frameworks. Our application is shown below:

1 from f l a s k impor t F l a s k , r e q u e s t , r e n d e r _ t e m p l a t e _ s t r i n g , render −
2 _ t e m p l a t e

Figure 5: Effect of adversarial data injection for an MCU
attack scenario using the contamination parameter as 0.1.
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Figure 6: ROC curves using the percentage thresholds for
different sequence lengths

3 app = F l a s k ( __name__ )
4 @app . r o u t e ( ' / ' )
5 d e f sample ( ) :
6 person = { ' name ' : "XYZ" , ' d e t a i l s ' : " == dfdgg ␣ . . . . . . ␣ c G 5 l c n J l Z g == " }
7 i f r e q u e s t . a r g s . g e t ( ' name ' ) :
8 person [ ' name ' ] = r e q u e s t . a r g s . g e t ( ' name ' )
9 t e m p l a t e = ' ' ' <h2>The d e t a i l s a r e : %s ! < / h2> ' ' ' % person [ ' name ' ]

10 r e t u r n r e n d e r _ t e m p l a t e _ s t r i n g ( t emp la t e , person = person )

A legitimate user’s request may look as follows:
1 Webpage . com?name=XYZ { { person . d e t a i l s } }

An attack request may look as follows:
1 Webpage . com?name=XYZ { { person . d e t a i l s } } { { person . d e t a i l s } } −
2 . . . . . . { { per son . d e t a i l s } } { { person . d e t a i l s } }

; where {{𝑝𝑒𝑟𝑠𝑜𝑛.𝑑𝑒𝑡𝑎𝑖𝑙𝑠}} can be appended to the URL hundreds
of times, until the limit for the allowed maximum length for a URL
is reached. If {{𝑝𝑒𝑟𝑠𝑜𝑛.𝑑𝑒𝑡𝑎𝑖𝑙𝑠}} resolves to a large text or string,
the call to render_template_string() would lead to hundreds of oc-
currences of {{𝑝𝑒𝑟𝑠𝑜𝑛.𝑑𝑒𝑡𝑎𝑖𝑙𝑠}} being resolved. The return value of
the function will be hundreds of times larger than the return values
of legitimate requests. If multiple concurrent malicious requests
are made to the server this can overload its outgoing bandwidth
and deny service to legitimate clients.
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Table 8: Classification accuracy for the liberal design scenario for 1-class SVM and elliptic envelope.

liberal design 1-class SVM elliptic envelope
scenario TP TN FP FN TP TN FP FN

SL 93.2% 92.4% 7.6% 6.8% 99.9% 99.1% 0.9% 0.1%
HC 93.6% 91.7% 8.3% 6.4% 99.8% 98.1% 1.9% 0.2%

Re-DoS 93.9% 92.1% 7.9% 6.1% 99.6% 98.7% 1.3% 0.4%
PHPEx 93.1% 92.4% 7.6% 6.9% 99.7% 99.4% 0.6% 0.3%
IRC 93.7% 92.1% 7.9% 6.3% 100% 96.6% 3.4% 0%
MCU 94.1% 92.5% 7.5% 5.9% 99.9% 99.9% 0.1% 0.1%
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